Reliable landmine detection is still an unresolved problem. Demining operations are complex activities because of the large variety of existing landmine types, many different possible soil and terrain conditions, and environmental circumstances. Due to its ability of detecting both metallic and non-metallic objects, ground penetrating radar (GPR) is a promising method for detecting landmines that may allow faster and safer operations. As the performance of GPR is mainly governed by the target signature, the potential of discriminating target based on the presence of internal reflections could be a valuable advantage for identification and recognition process. This study demonstrates that from a set of high resolution GPR slices the internal design of the landmine can be properly imaged and characterised, confirming the applicability of the methodology and the validity of such an approach.

Landmine internal structure detection from ground penetrating radar images

Lombardi, Federico;
2018-01-01

Abstract

Reliable landmine detection is still an unresolved problem. Demining operations are complex activities because of the large variety of existing landmine types, many different possible soil and terrain conditions, and environmental circumstances. Due to its ability of detecting both metallic and non-metallic objects, ground penetrating radar (GPR) is a promising method for detecting landmines that may allow faster and safer operations. As the performance of GPR is mainly governed by the target signature, the potential of discriminating target based on the presence of internal reflections could be a valuable advantage for identification and recognition process. This study demonstrates that from a set of high resolution GPR slices the internal design of the landmine can be properly imaged and characterised, confirming the applicability of the methodology and the validity of such an approach.
2018
2018 IEEE Radar Conference, RadarConf 2018
9781538641675
Ground Penetrating Radar; Landmine detection; Target characterisation; Target imaging; Computer Networks and Communications; Signal Processing; Instrumentation
File in questo prodotto:
File Dimensione Formato  
2018_RadarConfw.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1083480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact