Pol-Mux transmission is a well established technique that enhances spectral efficiency by simultaneously transmitting over horizontal and vertical polarizations of the electrical field. However, cross-coupling of the two polarizations impairs transmission. Under the assumption that the cross-coupling matrix is a Markov process with free-running state, we propose upper and lower bounds to the information rate that can be transferred through the channel. Simulation results show that the two bounds are tight for values of the cross-coupling power of practical interest and modulation formats up to 16-QAM (quadrature amplitude modulation).
Upper and lower bounds to the information rate transferred through the Pol-Mux channel
Spalvieri, Arnaldo;Reggiani, Luca;Dossi, Laura
2018-01-01
Abstract
Pol-Mux transmission is a well established technique that enhances spectral efficiency by simultaneously transmitting over horizontal and vertical polarizations of the electrical field. However, cross-coupling of the two polarizations impairs transmission. Under the assumption that the cross-coupling matrix is a Markov process with free-running state, we propose upper and lower bounds to the information rate that can be transferred through the channel. Simulation results show that the two bounds are tight for values of the cross-coupling power of practical interest and modulation formats up to 16-QAM (quadrature amplitude modulation).File | Dimensione | Formato | |
---|---|---|---|
oe-26-21-27118.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.