Alkylated aromatics constitute a significant fraction of the components commonly found in commercial fuels. Toluene is typically considered as a reference fuel. Together with n-heptane and iso-octane, it allows for realistic emulations of the behavior of real fuels by the means of surrogate mixture formulations. Moreover, it is a key precursor for the formation of poly-aromatic hydrocarbons, which are of relevance to understanding soot growth and oxidation mechanisms. In this study the POLIMI kinetic model is first updated based on the literature and on recent kinetic modelling studies of toluene pyrolysis and oxidation. Then, important reaction pathways are investigated by means of high-level theoretical methods, thereby advancing the present knowledge on toluene oxidation. H-Abstraction reactions by OH, HO2, O and O2, and the reactivity on the multi well benzyl-oxygen (C6H5CH2 + O2) potential energy surface (PES) were investigated using electronic structure calculations, transition state theory in its conventional, variational, and variable reaction coordinate forms (VRC-TST), and master equation calculations. Exploration of the effect on POLIMI model performance of literature rate constants and of the present calculations provides valuable guidelines for implementation of the new rate parameters in existing toluene kinetic models.

H-Abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation

Pelucchi, M.;Cavallotti, C.;Faravelli, T.;
2018-01-01

Abstract

Alkylated aromatics constitute a significant fraction of the components commonly found in commercial fuels. Toluene is typically considered as a reference fuel. Together with n-heptane and iso-octane, it allows for realistic emulations of the behavior of real fuels by the means of surrogate mixture formulations. Moreover, it is a key precursor for the formation of poly-aromatic hydrocarbons, which are of relevance to understanding soot growth and oxidation mechanisms. In this study the POLIMI kinetic model is first updated based on the literature and on recent kinetic modelling studies of toluene pyrolysis and oxidation. Then, important reaction pathways are investigated by means of high-level theoretical methods, thereby advancing the present knowledge on toluene oxidation. H-Abstraction reactions by OH, HO2, O and O2, and the reactivity on the multi well benzyl-oxygen (C6H5CH2 + O2) potential energy surface (PES) were investigated using electronic structure calculations, transition state theory in its conventional, variational, and variable reaction coordinate forms (VRC-TST), and master equation calculations. Exploration of the effect on POLIMI model performance of literature rate constants and of the present calculations provides valuable guidelines for implementation of the new rate parameters in existing toluene kinetic models.
2018
Physics and Astronomy (all); Physical and Theoretical Chemistry
File in questo prodotto:
File Dimensione Formato  
c7cp07779c.pdf

Accesso riservato

: Publisher’s version
Dimensione 8.13 MB
Formato Adobe PDF
8.13 MB Adobe PDF   Visualizza/Apri
1461435_Accepted manuscript CAVALLOTTI - 11311-1080014.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 957.61 kB
Formato Adobe PDF
957.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1080014
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 72
social impact