In this paper, a data-driven prognostic algorithm for the estimation of the Remaining Useful Life (RUL) of a product is proposed. It is based on the acquisition and exploitation of run-to-failure data of homogeneous products, in the followings referred as fleet of products. The algorithm is able to detect the set of products (sub-fleet of products) showing highest degradation pattern similarity with the one under study and exploits the related monitoring data for a reliable prediction of the RUL. In particular, a novel methodology for the sub-fleet identification is presented and compared with other solution found in literature. The results obtained for a real application case as Medium and High Voltage Circuit Breaker, have shown a high prognostic power for the algorithm, which therefore represents a potential tool for an effective Predictive Maintenance (PdM) strategy.

A data-driven prognostic approach based on statistical similarity: An application to industrial circuit breakers

Leone, Giacomo;Cristaldi, Loredana;
2017-01-01

Abstract

In this paper, a data-driven prognostic algorithm for the estimation of the Remaining Useful Life (RUL) of a product is proposed. It is based on the acquisition and exploitation of run-to-failure data of homogeneous products, in the followings referred as fleet of products. The algorithm is able to detect the set of products (sub-fleet of products) showing highest degradation pattern similarity with the one under study and exploits the related monitoring data for a reliable prediction of the RUL. In particular, a novel methodology for the sub-fleet identification is presented and compared with other solution found in literature. The results obtained for a real application case as Medium and High Voltage Circuit Breaker, have shown a high prognostic power for the algorithm, which therefore represents a potential tool for an effective Predictive Maintenance (PdM) strategy.
2017
Data-driven; Industrial circuit breakers; Prognostics; Remaining useful life; Statistical test; Sub-fleet; Instrumentation; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0263224117301100-main.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1079327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact