Many of the best performing solar cells based on perovskite-halide light absorbers use TiO2as an electron selective contact layer. However, TiO2usually requires high temperature sintering, is related to electrical instabilities in perovskite solar cells, and causes cell performance degradation under full solar spectrum illumination. Here we demonstrate an alternative approach based on the modification of transparent conductive oxide electrodes with self-assembled siloxane-functionalized fullerene molecules, eliminating TiO2or any other additional electron transporting layer. We demonstrate that these molecules spontaneously form a homogenous monolayer acting as an electron selective layer on top of the fluorine doped tin oxide (FTO) electrode, minimizing material consumption. We find that the fullerene-modified FTO is a robust, chemically inert charge selective contact for perovskite based solar cells, which can reach 15% of stabilised power conversion efficiency in a flat junction device architecture using a scalable, low temperature, and reliable process. In contrast to TiO2, devices employing a molecularly thin functionalized fullerene layer show unaffected performance after 67 h of UV light exposure.

Functionalization of transparent conductive oxide electrode for TiO2-free perovskite solar cells

Gatti, T.;CITO, ALESSANDRO;Gadermaier, C.;Petrozza, A.
2017-01-01

Abstract

Many of the best performing solar cells based on perovskite-halide light absorbers use TiO2as an electron selective contact layer. However, TiO2usually requires high temperature sintering, is related to electrical instabilities in perovskite solar cells, and causes cell performance degradation under full solar spectrum illumination. Here we demonstrate an alternative approach based on the modification of transparent conductive oxide electrodes with self-assembled siloxane-functionalized fullerene molecules, eliminating TiO2or any other additional electron transporting layer. We demonstrate that these molecules spontaneously form a homogenous monolayer acting as an electron selective layer on top of the fluorine doped tin oxide (FTO) electrode, minimizing material consumption. We find that the fullerene-modified FTO is a robust, chemically inert charge selective contact for perovskite based solar cells, which can reach 15% of stabilised power conversion efficiency in a flat junction device architecture using a scalable, low temperature, and reliable process. In contrast to TiO2, devices employing a molecularly thin functionalized fullerene layer show unaffected performance after 67 h of UV light exposure.
2017
Chemistry (all); Renewable Energy, Sustainability and the Environment; Materials Science (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1079212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 53
social impact