Ground Penetrating Radar (GPR) images are affected, to some degree, by the relative orientation of antennas and subsurface targets. This is particularly true not only for targets that show a significant directivity, but also for inclined planes, such as fractures and faults. Depending on the relative geometry between the antennas and the orientation of the target, radar waves can be preferentially scattered, which causes changes in the reflected signal amplitude. Therefore, traditional single polarization and single azimuth surveys may produce inadequate results. The work presented here examines the use of a multi-azimuth GPR survey to increase the imaging performance of inclined fractures, showing the shortcomings of single-profile surveying and highlighting the benefits that such a strategy has on detection and characterization.

Multi-azimuth ground penetrating radar surveys to improve the imaging of complex fractures

Lombardi, Federico;Lualdi, Maurizio
2018-01-01

Abstract

Ground Penetrating Radar (GPR) images are affected, to some degree, by the relative orientation of antennas and subsurface targets. This is particularly true not only for targets that show a significant directivity, but also for inclined planes, such as fractures and faults. Depending on the relative geometry between the antennas and the orientation of the target, radar waves can be preferentially scattered, which causes changes in the reflected signal amplitude. Therefore, traditional single polarization and single azimuth surveys may produce inadequate results. The work presented here examines the use of a multi-azimuth GPR survey to increase the imaging performance of inclined fractures, showing the shortcomings of single-profile surveying and highlighting the benefits that such a strategy has on detection and characterization.
2018
Fracture imaging; Geophysical surveys; Ground penetrating radar; Multi-azimuth GPR; Earth and Planetary Sciences (all)
File in questo prodotto:
File Dimensione Formato  
Lombardi Nov2018 Geoscience.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 7.3 MB
Formato Adobe PDF
7.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1079116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact