The purpose of this paper is to describe and analyse an electromechanical model of a mini flapping wing mechanism for the purpose of system optimisation. The system comprises of a small DC motor connected to a voltage source, a gearbox and a slider crank that drives two wings. The DC gearmotor is modelled considering its both mechanical and electrical components. An equivalent viscous damper is considered to model the mechanical losses of the gearmotor. The crank mechanism is assumed massless and the inertia of the wings only considered in the model. The aerodynamic drag and lift are modelled using an equivalent viscous damping model as an energy sink. The parameters of the system are estimated using published experimental data and manufacturer datasheets for the corresponding DC gearmotor. The energy efficiency as the ratio of aerodynamic power to the input electrical power of the system and also the aerodynamic power are used as two measures to evaluate the system performance.

Developing and Analysing an Electromechanical Model of a Bio-Inspired Flapping Wing Mini UAV

Biggs, J. D.;
2018-01-01

Abstract

The purpose of this paper is to describe and analyse an electromechanical model of a mini flapping wing mechanism for the purpose of system optimisation. The system comprises of a small DC motor connected to a voltage source, a gearbox and a slider crank that drives two wings. The DC gearmotor is modelled considering its both mechanical and electrical components. An equivalent viscous damper is considered to model the mechanical losses of the gearmotor. The crank mechanism is assumed massless and the inertia of the wings only considered in the model. The aerodynamic drag and lift are modelled using an equivalent viscous damping model as an energy sink. The parameters of the system are estimated using published experimental data and manufacturer datasheets for the corresponding DC gearmotor. The energy efficiency as the ratio of aerodynamic power to the input electrical power of the system and also the aerodynamic power are used as two measures to evaluate the system performance.
2018
28th International Conference on Noise and Vibration Engineering, ISMA 2018 and 7th International Conference on Uncertainty in Structural Dynamics, USD 2018
978-907380299-5
File in questo prodotto:
File Dimensione Formato  
PARKM01-18.pdf

accesso aperto

Descrizione: Paper
: Publisher’s version
Dimensione 572.74 kB
Formato Adobe PDF
572.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1078409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact