This paper presents an original combined approach to shape-sensing and structural health monitoring of helicopter rotors. It is based on the measurement of strain in a limited number of points over the blade surface. The Shape-Sensing algorithm is modal-based and capable of reconstructing nonlinear, moderate lag, flap and torsion deflections. Two Structural Health Monitoring algorithms are presented, one in the time domain and the other in the frequency domain. Both are based on the analysis of the discrepancies between the strains arising in the damaged and the undamaged blades. Two damage types have been considered: a mass unbalance and a localized stiffness reduction. Both Shape Sensing and Structural Health Monitoring capabilities have been tested by numerical simulation using a multibody dynamic solver for general nonlinear comprehensive aeroelastic analysis.

Rotor State Evaluation and Structural Health Monitoring Through Strain Sensors

Masarati, P.
2017-01-01

Abstract

This paper presents an original combined approach to shape-sensing and structural health monitoring of helicopter rotors. It is based on the measurement of strain in a limited number of points over the blade surface. The Shape-Sensing algorithm is modal-based and capable of reconstructing nonlinear, moderate lag, flap and torsion deflections. Two Structural Health Monitoring algorithms are presented, one in the time domain and the other in the frequency domain. Both are based on the analysis of the discrepancies between the strains arising in the damaged and the undamaged blades. Two damage types have been considered: a mass unbalance and a localized stiffness reduction. Both Shape Sensing and Structural Health Monitoring capabilities have been tested by numerical simulation using a multibody dynamic solver for general nonlinear comprehensive aeroelastic analysis.
2017
43rd European Rotorcraft Forum (ERF 2017)
978-1-5108-6538-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1078408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact