The simulation of impact scenario against a structure requires the use of material models able to reproduce all aspects of the mechanical behaviour of the involved materials; plastic flow is one of the main aspects to be reproduced. In more detail, attention has to be paid to the investigation of strain-rate and temperature sensitivities, as well as their interaction, which necessitates the use of a reverse engineering approach. The present paper mainly focuses on the tensile behaviour and an ad-hoc testing campaign was performed on cylindrical dog-bone specimens made in Al6061T6 at different temperatures and strain-rates extending the range up to a level where, at present, there is a lack in the scientific literature. The thermal softening effect was investigated in quasi-static as well as in dynamic loading conditions from room temperature up to 400 °C; while the material strength dependence on the strain-rate was studied up to 104 s−1 on miniaturized samples. Microstructure analyses were performed to better investigate the mechanical response at different loading conditions. The parameters of the Johnson-Cook model were identified starting from experimental data via a numerical inverse approach based on FEM simulations. These parameters can be used for simulations of extreme loading scenario like ballistic impact events.

Behaviour of Al6061-T6 alloy at different temperatures and strain-rates: Experimental characterization and material modelling

Manes, A.
2018-01-01

Abstract

The simulation of impact scenario against a structure requires the use of material models able to reproduce all aspects of the mechanical behaviour of the involved materials; plastic flow is one of the main aspects to be reproduced. In more detail, attention has to be paid to the investigation of strain-rate and temperature sensitivities, as well as their interaction, which necessitates the use of a reverse engineering approach. The present paper mainly focuses on the tensile behaviour and an ad-hoc testing campaign was performed on cylindrical dog-bone specimens made in Al6061T6 at different temperatures and strain-rates extending the range up to a level where, at present, there is a lack in the scientific literature. The thermal softening effect was investigated in quasi-static as well as in dynamic loading conditions from room temperature up to 400 °C; while the material strength dependence on the strain-rate was studied up to 104 s−1 on miniaturized samples. Microstructure analyses were performed to better investigate the mechanical response at different loading conditions. The parameters of the Johnson-Cook model were identified starting from experimental data via a numerical inverse approach based on FEM simulations. These parameters can be used for simulations of extreme loading scenario like ballistic impact events.
2018
Al6061 T6; Hopkinson Tension Bar; Johnson-Cook model; Reverse engineering approach; Strain-rate; Thermal softening; Materials Science (all); Condensed Matter Physics; Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
pagination_MSA_36782.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.47 MB
Formato Adobe PDF
3.47 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1078244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 20
social impact