Selective Laser Melting is a powder-bed additive manufacturing technology that allows producing fully-dense metal objects with complex shapes and high mechanical properties. In this work, Selective Laser Melting was used to produce 316L specimens including lattice structures with the aim of exploring the possibility given by additive manufacturing technologies to produce parts with increased damping capacity, especially in relation to their weight. The internal friction of bulk and lattice specimens was measured in terms of delay between stress and deformation (i.e. tanδ) for different applied loads and frequencies. A finite element model was used to design the test and microstructure investigations were performed to support the results obtained by dynamo-mechanical tests.
Damping behavior of 316L lattice structures produced by Selective Laser Melting
Rosa, Francesco;Manzoni, Stefano;Casati, Riccardo
2018-01-01
Abstract
Selective Laser Melting is a powder-bed additive manufacturing technology that allows producing fully-dense metal objects with complex shapes and high mechanical properties. In this work, Selective Laser Melting was used to produce 316L specimens including lattice structures with the aim of exploring the possibility given by additive manufacturing technologies to produce parts with increased damping capacity, especially in relation to their weight. The internal friction of bulk and lattice specimens was measured in terms of delay between stress and deformation (i.e. tanδ) for different applied loads and frequencies. A finite element model was used to design the test and microstructure investigations were performed to support the results obtained by dynamo-mechanical tests.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0264127518307901-main.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.76 MB
Formato
Adobe PDF
|
4.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.