The chlor-alkali industry produces significant amounts of hydrogen as by-product which can potentially feed a polymeric electrolyte membrane (PEM) fuel cell (FC) unit, whose electricity and heat production can cover part of the chemical plant consumptions yielding remarkable energy and emission savings. This work presents the modeling, development, and experimental results of a large-scale (2 MW) PEM fuel cell power plant installed at the premises of a chlor-alkali industry. It is first discussed an overview of project’s membrane- electrode assembly and fuel cell development for long life stationary applications, focusing on the design-for-manufacture process and related high-volume manufacturing routes. The work then discusses the modeling of the power plant, including a specific lumped model predicting FC stack behavior as a function of inlet stream conditions and power set point, according to regressed polarization curves. Cells’ performance decay versus lifetime reflects long-term stack test data, aiming to evidence the impact on overall energy balances and efficiency of the progression of lifetime. Balance of plant is modeled to simulate auxiliary consumptions, pressure drops, and components’ operating conditions. The model allows studying different operational strategies that maintain the power production during lifetime, minimizing efficiency losses, as well as to investigate the optimized operating setpoint of the plant at full load and during part-load operation. The last section of the paper discusses the experimental results, through a complete analysis of the plant performance after startup, including energy and mass balances and allowing to validate the model. Cumulated indicators over the first two years of operations regarding energy production, hydrogen consumption, and efficiency are also discussed.

Modeling, Development, and Testing of a 2 MW Polymeric Electrolyte Membrane Fuel Cell Plant Fueled With Hydrogen From a Chlor-Alkali Industry

Campanari, Stefano;Guandalini, Giulio;
2019-01-01

Abstract

The chlor-alkali industry produces significant amounts of hydrogen as by-product which can potentially feed a polymeric electrolyte membrane (PEM) fuel cell (FC) unit, whose electricity and heat production can cover part of the chemical plant consumptions yielding remarkable energy and emission savings. This work presents the modeling, development, and experimental results of a large-scale (2 MW) PEM fuel cell power plant installed at the premises of a chlor-alkali industry. It is first discussed an overview of project’s membrane- electrode assembly and fuel cell development for long life stationary applications, focusing on the design-for-manufacture process and related high-volume manufacturing routes. The work then discusses the modeling of the power plant, including a specific lumped model predicting FC stack behavior as a function of inlet stream conditions and power set point, according to regressed polarization curves. Cells’ performance decay versus lifetime reflects long-term stack test data, aiming to evidence the impact on overall energy balances and efficiency of the progression of lifetime. Balance of plant is modeled to simulate auxiliary consumptions, pressure drops, and components’ operating conditions. The model allows studying different operational strategies that maintain the power production during lifetime, minimizing efficiency losses, as well as to investigate the optimized operating setpoint of the plant at full load and during part-load operation. The last section of the paper discusses the experimental results, through a complete analysis of the plant performance after startup, including energy and mass balances and allowing to validate the model. Cumulated indicators over the first two years of operations regarding energy production, hydrogen consumption, and efficiency are also discussed.
2019
Polymeric Electrolyte Membrane Fuel Cell, Hydrogen, Chlor-Alkali, Cogeneration
File in questo prodotto:
File Dimensione Formato  
JEECS-18-1113.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 499.64 kB
Formato Adobe PDF
499.64 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1078175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 11
social impact