Carbon nanomaterials are receiving an increasingly large interest in a variety of fields, including also nanomedicine. In this area, much attention is devoted to investigating and modeling the behavior of these nanomaterials when they interact with biological fluids and with biological macromolecules, in particular proteins and oligopeptides. The interaction with these molecules is in fact crucial to understand and predict the efficacy of nanomaterials as drug carriers or therapeutic agents as well as their potential toxicity when they occupy the active site of a protein or severely affect the secondary and tertiary structure, or even the local dynamics, thus inhibiting their biological function. In this review, therefore, we describe the most recent work carried out in the last few years to model the interaction between carbon nanomaterials, either pristine or functionalized, and proteins or oligopeptides using classical atomistic methods, mainly molecular dynamics simulations. The attention is focused on 0-dimensional fullerenes, mainly C 60 , on 1-dimensional carbon nanotubes, mostly the single-walled armchair and some chiral ones, and on 2-dimensional graphene and graphyne, the latter containing also sp hybridized atoms in addition to the sp 2 ones common to the other carbon nanomaterials.
Classical atomistic simulations of protein adsorption on carbon nanomaterials
Ganazzoli, Fabio;Raffaini, Giuseppina
2019-01-01
Abstract
Carbon nanomaterials are receiving an increasingly large interest in a variety of fields, including also nanomedicine. In this area, much attention is devoted to investigating and modeling the behavior of these nanomaterials when they interact with biological fluids and with biological macromolecules, in particular proteins and oligopeptides. The interaction with these molecules is in fact crucial to understand and predict the efficacy of nanomaterials as drug carriers or therapeutic agents as well as their potential toxicity when they occupy the active site of a protein or severely affect the secondary and tertiary structure, or even the local dynamics, thus inhibiting their biological function. In this review, therefore, we describe the most recent work carried out in the last few years to model the interaction between carbon nanomaterials, either pristine or functionalized, and proteins or oligopeptides using classical atomistic methods, mainly molecular dynamics simulations. The attention is focused on 0-dimensional fullerenes, mainly C 60 , on 1-dimensional carbon nanotubes, mostly the single-walled armchair and some chiral ones, and on 2-dimensional graphene and graphyne, the latter containing also sp hybridized atoms in addition to the sp 2 ones common to the other carbon nanomaterials.File | Dimensione | Formato | |
---|---|---|---|
COCIS review 2019.pdf
Open Access dal 01/07/2021
Descrizione: Articolo
:
Publisher’s version
Dimensione
863.02 kB
Formato
Adobe PDF
|
863.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.