This paper describes the neutronic benchmarks and the results obtained by the various participants of the FP7 project EVOL and the ROSATOM project MARS. The aim of the benchmarks was two-fold: first to verify and validate each of the code packages of the project partners, adapted for liquid-fueled reactors, and second to check the dependence of the core characteristics to nuclear data set for application on a molten salt fast reactor (MSFR). The MSFR operates with the thorium fuel cycle and can be started with 233U-enriched U and/or TRU elements as initial fissile load. All three compositions were covered by the present benchmark. The calculations have confirmed that the MSFR has very favorable characteristics not present in other Gen4 fast reactors, like strong negative temperature and void reactivity coefficients, a low-fissile inventory, a reduced longlived waste production and its burning capacities of nuclear waste produced in currently operational reactors.

Neutronic Benchmark of the Molten Salt Fast Reactor in the frame of the EVOL and MARS Collaborative Projects

L. Luzzi;A. Cammi;
2019-01-01

Abstract

This paper describes the neutronic benchmarks and the results obtained by the various participants of the FP7 project EVOL and the ROSATOM project MARS. The aim of the benchmarks was two-fold: first to verify and validate each of the code packages of the project partners, adapted for liquid-fueled reactors, and second to check the dependence of the core characteristics to nuclear data set for application on a molten salt fast reactor (MSFR). The MSFR operates with the thorium fuel cycle and can be started with 233U-enriched U and/or TRU elements as initial fissile load. All three compositions were covered by the present benchmark. The calculations have confirmed that the MSFR has very favorable characteristics not present in other Gen4 fast reactors, like strong negative temperature and void reactivity coefficients, a low-fissile inventory, a reduced longlived waste production and its burning capacities of nuclear waste produced in currently operational reactors.
2019
File in questo prodotto:
File Dimensione Formato  
EPJ_Nuclear_Sciences_&_Technologies_5_(2019)_1-26.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 6.78 MB
Formato Adobe PDF
6.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1077873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 27
social impact