This paper deals with the numerical approach and technical implementation of the 6-DoF hydrodynamic modelling, combined with the Politecnico di Milano HexaFloat robot, adopted for wind tunnel Hybrid/HIL tests floating offshore wind turbines. The hybrid testing methodology, along with its oceanbasin counterpart, is currently being considered as a valuable upgrade in the model scale experiments, for its capability to get rid of the typical scaling issues of such systems. The work reports an overview of the setup, the general testing methodology, presenting the main challenges about the deployment on the realtime hardware, summarizing the key solving choices. A set of results related to code-to-code comparison between the optimized HIL numerical model and the reference FAST computations are included, confirming the correctness of the approach.
6-DOF hydrodynamic modelling for wind tunnel hybrid/hil tests of FOWT: The real-time challenge
Bayati, Ilmas;Facchinetti, Alan;Fontanella, Alessandro;Belloli, Marco
2018-01-01
Abstract
This paper deals with the numerical approach and technical implementation of the 6-DoF hydrodynamic modelling, combined with the Politecnico di Milano HexaFloat robot, adopted for wind tunnel Hybrid/HIL tests floating offshore wind turbines. The hybrid testing methodology, along with its oceanbasin counterpart, is currently being considered as a valuable upgrade in the model scale experiments, for its capability to get rid of the typical scaling issues of such systems. The work reports an overview of the setup, the general testing methodology, presenting the main challenges about the deployment on the realtime hardware, summarizing the key solving choices. A set of results related to code-to-code comparison between the optimized HIL numerical model and the reference FAST computations are included, confirming the correctness of the approach.File | Dimensione | Formato | |
---|---|---|---|
paperOA.pdf
accesso aperto
Descrizione: paper
:
Pre-Print (o Pre-Refereeing)
Dimensione
1.85 MB
Formato
Adobe PDF
|
1.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.