Thermal-Hydraulic (TH) codes are used to simulate the response of nuclear safety systems under transient and accident conditions. The outcomes of the simulations are used to verify the safety margins required for safe operation and make decisions on how to maintain them. In this work, a novel Expert System (ES) based on Regional Sensitivity Analysis (RSA) is developed to guide a system undergoing an accident scenario towards the safest conditions in the optimal number of operation. The ES proceeds by firstly identifying the (uncertain) system controllable variables (i.e., control rods position, feed-water flow rate, void fraction inside the steam generator, etc.) that most affect the system response by RSA; then, the limit-state function is calibrated on a dataset of outcomes of TH code runs and the system failure boundary (i.e., the limit surface) is defined on the set of (uncertain) TH input variables. Application of the ES is firstly shown with respect to an analytical case study that artificially simulates the response of a NPP to an accident scenario and, then, to a practical case study concerning the response of the pressurizer of a Pressurized Water Reactor (PWR).

A Regional Sensitivity Analysis-based Expert System for safety margins control

Di Maio, Francesco;Bandini, Alessandro;Zio, Enrico
2018-01-01

Abstract

Thermal-Hydraulic (TH) codes are used to simulate the response of nuclear safety systems under transient and accident conditions. The outcomes of the simulations are used to verify the safety margins required for safe operation and make decisions on how to maintain them. In this work, a novel Expert System (ES) based on Regional Sensitivity Analysis (RSA) is developed to guide a system undergoing an accident scenario towards the safest conditions in the optimal number of operation. The ES proceeds by firstly identifying the (uncertain) system controllable variables (i.e., control rods position, feed-water flow rate, void fraction inside the steam generator, etc.) that most affect the system response by RSA; then, the limit-state function is calibrated on a dataset of outcomes of TH code runs and the system failure boundary (i.e., the limit surface) is defined on the set of (uncertain) TH input variables. Application of the ES is firstly shown with respect to an analytical case study that artificially simulates the response of a NPP to an accident scenario and, then, to a practical case study concerning the response of the pressurizer of a Pressurized Water Reactor (PWR).
2018
Best-estimate thermal-hydraulic code; Expert System; Limit-state function; Nuclear system; Pressurizer; Regional Sensitivity Analysis; Safety margins; Nuclear and High Energy Physics; Nuclear Energy and Engineering; Materials Science (all); Safety, Risk, Reliability and Quality; Waste Management and Disposal; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
rev_A regional Sensitivity Analysis.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1077610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact