The kaonic deuterium measurement at J-PARC and DAΦNE will provide a piece of information still missing to the antikaon-nucleon interaction close to threshold, providing valuable information to answer one of the most fundamental problems in hadron physics today - to the yet unsolved puzzle of how the hadron mass is generated. For this a new X-ray detector system has been developed to measure the shift and width of the 2p → 1s transition of kaonic deuterium with a precision of 60 eV and 140 eV, respectively.

A New Silicon Drift Detector System for Kaonic Atom Measurements

Amirkhani, A.;Bellotti, G.;Fiorini, C.;
2018-01-01

Abstract

The kaonic deuterium measurement at J-PARC and DAΦNE will provide a piece of information still missing to the antikaon-nucleon interaction close to threshold, providing valuable information to answer one of the most fundamental problems in hadron physics today - to the yet unsolved puzzle of how the hadron mass is generated. For this a new X-ray detector system has been developed to measure the shift and width of the 2p → 1s transition of kaonic deuterium with a precision of 60 eV and 140 eV, respectively.
2018
Physics and Astronomy (all)
File in questo prodotto:
File Dimensione Formato  
Trippl_2018_J._Phys.__Conf._Ser._1138_012013.pdf

accesso aperto

: Publisher’s version
Dimensione 6.13 MB
Formato Adobe PDF
6.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1076987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact