The interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics with still many important open questions. The investigation of light kaonic atoms is, in this context, a unique tool to obtain precise information on this interaction. The energy shift and broadening of the lowest-lying states of such atoms, induced by the kaon-nucleus strong interaction, can be determined with high precision from atomic X-ray spectroscopy. This experimental method provides unique information to understand the low energy kaon-nucleus interaction at threshold. The lightest atomic systems, kaonic hydrogen and kaonic deuterium, deliver the isospin-dependent kaon-nucleon scattering lengths. The most precise kaonic hydrogen measurement to date, together with an exploratory measurement of kaonic deuterium, were carried out by the SIDDHARTA collaboration at the DAΦNE electron-positron collider of LNF-INFN, by combining the excellent quality kaon beam delivered by the collider with new experimental techniques, as fast and precise X-ray detectors: Silicon Drift Detectors. The measurement of kaonic deuterium will be realized in the near future by SIDDHARTA-2, a major upgrade of SIDDHARTA. In this paper an overview of the main results obtained by SIDDHARTA together with the future plans, are given.

The kaonic atoms research program at DAΦNE: Overview and perspectives

Amirkhani, A.;BANIAHMAD, ATA;Bellotti, G.;Fiorini, C.;
2018-01-01

Abstract

The interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics with still many important open questions. The investigation of light kaonic atoms is, in this context, a unique tool to obtain precise information on this interaction. The energy shift and broadening of the lowest-lying states of such atoms, induced by the kaon-nucleus strong interaction, can be determined with high precision from atomic X-ray spectroscopy. This experimental method provides unique information to understand the low energy kaon-nucleus interaction at threshold. The lightest atomic systems, kaonic hydrogen and kaonic deuterium, deliver the isospin-dependent kaon-nucleon scattering lengths. The most precise kaonic hydrogen measurement to date, together with an exploratory measurement of kaonic deuterium, were carried out by the SIDDHARTA collaboration at the DAΦNE electron-positron collider of LNF-INFN, by combining the excellent quality kaon beam delivered by the collider with new experimental techniques, as fast and precise X-ray detectors: Silicon Drift Detectors. The measurement of kaonic deuterium will be realized in the near future by SIDDHARTA-2, a major upgrade of SIDDHARTA. In this paper an overview of the main results obtained by SIDDHARTA together with the future plans, are given.
2018
Physics and Astronomy (all)
File in questo prodotto:
File Dimensione Formato  
Curceanu_2018_J._Phys.__Conf._Ser._1138_012011.pdf

accesso aperto

: Publisher’s version
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1076981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact