We prove the existence of infinitely many solutions λ1, λ2∈ R, u, v∈ H1(R3), for the nonlinear Schrödinger system -Δu-λ1u=μu3+βuv2inR3-Δv-λ2v=μv3+βu2vinR3u,v>0inR3∫R3u2=a2and∫R3v2=a2,where a, μ> 0 and β≤ - μ are prescribed. Our solutions satisfy u≠ v so they do not come from a scalar equation. The proof is based on a new minimax argument, suited to deal with normalization conditions.

Multiple normalized solutions for a competing system of Schrödinger equations

Soave, Nicola
2019

Abstract

We prove the existence of infinitely many solutions λ1, λ2∈ R, u, v∈ H1(R3), for the nonlinear Schrödinger system -Δu-λ1u=μu3+βuv2inR3-Δv-λ2v=μv3+βu2vinR3u,v>0inR3∫R3u2=a2and∫R3v2=a2,where a, μ> 0 and β≤ - μ are prescribed. Our solutions satisfy u≠ v so they do not come from a scalar equation. The proof is based on a new minimax argument, suited to deal with normalization conditions.
Analysis; Applied Mathematics
File in questo prodotto:
File Dimensione Formato  
11311-1076942_Soave.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 501 kB
Formato Adobe PDF
501 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1076942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
social impact