Graph representations offer powerful and intuitive ways to describe data in a multitude of application domains. Here, we consider stochastic processes generating graphs and propose a methodology for detecting changes in stationarity of such processes. The methodology is general and considers a process generating attributed graphs with a variable number of vertices/edges, without the need to assume a one-to-one correspondence between vertices at different time steps. The methodology acts by embedding every graph of the stream into a vector domain, where a conventional multivariate change detection procedure can be easily applied. We ground the soundness of our proposal by proving several theoretical results. In addition, we provide a specific implementation of the methodology and evaluate its effectiveness on several detection problems involving attributed graphs representing biological molecules and drawings. Experimental results are contrasted with respect to suitable baseline methods, demonstrating the effectiveness of our approach.

Concept Drift and Anomaly Detection in Graph Streams

Alippi, Cesare;
2018-01-01

Abstract

Graph representations offer powerful and intuitive ways to describe data in a multitude of application domains. Here, we consider stochastic processes generating graphs and propose a methodology for detecting changes in stationarity of such processes. The methodology is general and considers a process generating attributed graphs with a variable number of vertices/edges, without the need to assume a one-to-one correspondence between vertices at different time steps. The methodology acts by embedding every graph of the stream into a vector domain, where a conventional multivariate change detection procedure can be easily applied. We ground the soundness of our proposal by proving several theoretical results. In addition, we provide a specific implementation of the methodology and evaluate its effectiveness on several detection problems involving attributed graphs representing biological molecules and drawings. Experimental results are contrasted with respect to suitable baseline methods, demonstrating the effectiveness of our approach.
2018
Anomaly detection; attributed graph; change detection; concept drift; dynamic/evolving graph; embedding; graph matching; stationarity; Software; Computer Science Applications1707 Computer Vision and Pattern Recognition; Computer Networks and Communications; Artificial Intelligence
File in questo prodotto:
File Dimensione Formato  
1706.06941.pdf

accesso aperto

Dimensione 702.67 kB
Formato Adobe PDF
702.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1076807
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 23
social impact