The advent of nanotechnology in medicine has allowed to eliminate the toxic excipients that are often necessary to formulate lipophilic drugs in clinics. An example is paclitaxel, one of the most important chemotherapeutic drugs developed so far, where the Cremophor EL has been eliminated in the Genexol and Abraxane formulations. However, the complex procedures to synthesize these formulations hamper their cost-effective use and, in turn, their distribution among the patient population. For this reason, a simplified method to formulate this drug directly at the bed of the patient has been adopted. It requires only the use of a syringe and it starts from a native dry amphiphilic biodegradable and biocompatible block-copolymer obtained via the combination of the reversible addition–fragmentation chain transfer polymerization and ring-opening polymerization. In this way, a novel paclitaxel formulation with the same drug pharmacological properties, but without the use of the Cremophor EL, can be produced. In addition, as long as these nanoparticles are engineered to act as solubility enhancers, a lower burden for its approval from the pharmaceutical regulatory agencies is also expected.

Self-Assembling PCL-Based Nanoparticles as PTX Solubility Enhancer Excipients

Capasso Palmiero, Umberto;Morbidelli, Massimo;Moscatelli, Davide
2018-01-01

Abstract

The advent of nanotechnology in medicine has allowed to eliminate the toxic excipients that are often necessary to formulate lipophilic drugs in clinics. An example is paclitaxel, one of the most important chemotherapeutic drugs developed so far, where the Cremophor EL has been eliminated in the Genexol and Abraxane formulations. However, the complex procedures to synthesize these formulations hamper their cost-effective use and, in turn, their distribution among the patient population. For this reason, a simplified method to formulate this drug directly at the bed of the patient has been adopted. It requires only the use of a syringe and it starts from a native dry amphiphilic biodegradable and biocompatible block-copolymer obtained via the combination of the reversible addition–fragmentation chain transfer polymerization and ring-opening polymerization. In this way, a novel paclitaxel formulation with the same drug pharmacological properties, but without the use of the Cremophor EL, can be produced. In addition, as long as these nanoparticles are engineered to act as solubility enhancers, a lower burden for its approval from the pharmaceutical regulatory agencies is also expected.
2018
drug delivery; excipient; nanoparticles; paclitaxel; self-assembly; Biotechnology; Bioengineering; Biomaterials; Polymers and Plastics; Materials Chemistry2506 Metals and Alloys
File in questo prodotto:
File Dimensione Formato  
2018 - Capasso Palmiero - Moscatelli - Macromolecular Bioscience - Self-Assembling PCL-Based Nanoparticles as PTX Solubility Enhancer Excipients.pdf

Accesso riservato

Descrizione: umb macromol
: Publisher’s version
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1076591
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact