Silicon photomultipliers (SiPMs) have improved significantly over the last years and now are widely employed in many different applications. However, the custom fabrication technologies exploited for commercial SiPMs do not allow the integration of any additional electronics, e.g., on-chip readout and analog (or digital) processing circuitry. In this paper, we present the design and characterization of two microelectronics-compatible SiPMs fabricated in a 0.16 µm–BCD (Bipolar-CMOS-DMOS) technology, with 0.67 mm × 0.67 mm total area, 10 × 10 square pixels and 53% fill-factor (FF). The photon detection efficiency (PDE) surpasses 33% (FF included), with a dark-count rate (DCR) of 330 kcps. Although DCR density is worse than that of state-of-the-art SiPMs, the proposed fabrication technology enables the development of cost-effective systems-on-chip (SoC) based on SiPM detectors. Furthermore, correlated noise components, i.e., afterpulsing and optical crosstalk, and photon timing response are comparable to those of best-in-class commercial SiPMs.
0.16 µm–BCD silicon photomultipliers with sharp timing response and reduced correlated noise
Sanzaro, Mirko;SIGNORELLI, FABIO;Tosi, Alberto;Zappa, Franco
2018-01-01
Abstract
Silicon photomultipliers (SiPMs) have improved significantly over the last years and now are widely employed in many different applications. However, the custom fabrication technologies exploited for commercial SiPMs do not allow the integration of any additional electronics, e.g., on-chip readout and analog (or digital) processing circuitry. In this paper, we present the design and characterization of two microelectronics-compatible SiPMs fabricated in a 0.16 µm–BCD (Bipolar-CMOS-DMOS) technology, with 0.67 mm × 0.67 mm total area, 10 × 10 square pixels and 53% fill-factor (FF). The photon detection efficiency (PDE) surpasses 33% (FF included), with a dark-count rate (DCR) of 330 kcps. Although DCR density is worse than that of state-of-the-art SiPMs, the proposed fabrication technology enables the development of cost-effective systems-on-chip (SoC) based on SiPM detectors. Furthermore, correlated noise components, i.e., afterpulsing and optical crosstalk, and photon timing response are comparable to those of best-in-class commercial SiPMs.File | Dimensione | Formato | |
---|---|---|---|
2018 - Sanzaro - 0.16 um–BCD SiPM.pdf
accesso aperto
Descrizione: Full text
:
Publisher’s version
Dimensione
4.21 MB
Formato
Adobe PDF
|
4.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.