The origin and role of oscillatory features detected in recent femtosecond spectroscopy experiments of photosynthetic complexes remain elusive. A key hypothesis underneath of these observations relies on electronic-vibrational resonance, where vibrational levels of an acceptor chromophore match the donor-acceptor electronic gap, accelerating the downhill energy transfer. Here we identify and detune such vibronic resonances using a high magnetic field that exclusively shifts molecular exciton states. We implemented ultrafast pump-probe spectroscopy into a specialized 25 T magnetic field facility and studied the light-harvesting complex PC645 from a cryptophyte algae where strongly coupled chromophores form molecular exciton states. We detected a change in high-frequency coherent oscillations when the field was engaged. Quantum chemical calculations coupled with a vibronic model explain the experiment as a magnetic field-induced shift of the exciton states, which in turn affects the electronic-vibrational resonance between pigments within the protein. Our results demonstrate the delicate sensitivity of interpigment coherent oscillations of vibronic origin to electronic-vibrational resonance interactions in light-harvesting complexes.

High Magnetic Field Detunes Vibronic Resonances in Photosynthetic Light Harvesting

Maiuri, Margherita;
2018-01-01

Abstract

The origin and role of oscillatory features detected in recent femtosecond spectroscopy experiments of photosynthetic complexes remain elusive. A key hypothesis underneath of these observations relies on electronic-vibrational resonance, where vibrational levels of an acceptor chromophore match the donor-acceptor electronic gap, accelerating the downhill energy transfer. Here we identify and detune such vibronic resonances using a high magnetic field that exclusively shifts molecular exciton states. We implemented ultrafast pump-probe spectroscopy into a specialized 25 T magnetic field facility and studied the light-harvesting complex PC645 from a cryptophyte algae where strongly coupled chromophores form molecular exciton states. We detected a change in high-frequency coherent oscillations when the field was engaged. Quantum chemical calculations coupled with a vibronic model explain the experiment as a magnetic field-induced shift of the exciton states, which in turn affects the electronic-vibrational resonance between pigments within the protein. Our results demonstrate the delicate sensitivity of interpigment coherent oscillations of vibronic origin to electronic-vibrational resonance interactions in light-harvesting complexes.
2018
Materials Science (all); Physical and Theoretical Chemistry
File in questo prodotto:
File Dimensione Formato  
MagLab.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1073868
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact