Sigma phase precipitation occurring during the exposure of duplex stainless steels in the temperature range from 800 to 900 °C deeply affects the material toughness and corrosion resistance. σ-Phase precipitation process is strongly influenced by many physical parameters, such as the specific chemical composition, the ferrite amount and its average grain size, and the entity of plastic deformation due to the previous technological process. The strong dependencies of σ-phase precipitation on all these factors justify the continuous study of the process kinetics. This paper focuses on the σ-phase precipitation kinetics in F55 steel grade. The investigation has been performed by an innovative experimental method, such as the anisothermal dilatometric technique. The application of the Kissinger’s method has been used for deriving the process activation energy and kinetics. The results have been compared with the ones obtained by metallographic analysis and hardness tests performed on isothermally aged samples, heat-treated in a laboratory furnace at 850 °C.

The dilatometric technique for studying sigma phase precipitation kinetics in F55 steel grade

Rivolta, B.;Gerosa, R.;Tavasci, F.
2018-01-01

Abstract

Sigma phase precipitation occurring during the exposure of duplex stainless steels in the temperature range from 800 to 900 °C deeply affects the material toughness and corrosion resistance. σ-Phase precipitation process is strongly influenced by many physical parameters, such as the specific chemical composition, the ferrite amount and its average grain size, and the entity of plastic deformation due to the previous technological process. The strong dependencies of σ-phase precipitation on all these factors justify the continuous study of the process kinetics. This paper focuses on the σ-phase precipitation kinetics in F55 steel grade. The investigation has been performed by an innovative experimental method, such as the anisothermal dilatometric technique. The application of the Kissinger’s method has been used for deriving the process activation energy and kinetics. The results have been compared with the ones obtained by metallographic analysis and hardness tests performed on isothermally aged samples, heat-treated in a laboratory furnace at 850 °C.
2018
Dilatometer; Duplex; F55; Kinetics; Kissinger; Sigma phase; Condensed Matter Physics; Physical and Theoretical Chemistry
File in questo prodotto:
File Dimensione Formato  
s10973-017-6940-x.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1073798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact