We investigate via molecular dynamics simulations the behaviour of a polymer melt confined between surfaces with increasing spatial correlation (patchiness) of weakly and strongly interacting sites. Beyond a critical patchiness, we find a dramatic dynamic decoupling, characterized by a steep growth of the longest relaxation time and a constant diffusion coefficient. This arises from dynamic heterogeneities induced by the walls in the adjacent polymer layers, leading to the coexistence of fast and slow chain populations. Structural variations are also present, but they are not easy to detect. Our work opens the way to a better understanding of adhesion, friction, rubber reinforcement by fillers, and many other open issues involving the dynamics of polymeric materials on rough, chemically heterogeneous and possibly "dirty" surfaces.

Influence of wall heterogeneity on nanoscopically confined polymers

Pastore, Raffaele;David, Alessio;Casalegno, Mosè;Raos, Guido
2019-01-01

Abstract

We investigate via molecular dynamics simulations the behaviour of a polymer melt confined between surfaces with increasing spatial correlation (patchiness) of weakly and strongly interacting sites. Beyond a critical patchiness, we find a dramatic dynamic decoupling, characterized by a steep growth of the longest relaxation time and a constant diffusion coefficient. This arises from dynamic heterogeneities induced by the walls in the adjacent polymer layers, leading to the coexistence of fast and slow chain populations. Structural variations are also present, but they are not easy to detect. Our work opens the way to a better understanding of adhesion, friction, rubber reinforcement by fillers, and many other open issues involving the dynamics of polymeric materials on rough, chemically heterogeneous and possibly "dirty" surfaces.
2019
Physics and Astronomy (all); Physical and Theoretical Chemistry
File in questo prodotto:
File Dimensione Formato  
PCCP_manuscript.pdf

Open Access dal 02/12/2019

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 4.18 MB
Formato Adobe PDF
4.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1073530
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact