Given a branching random walk on a set X, we study its extinction probability vectors q(·,A). Their components are the probability that the process goes extinct in a fixed A ⊆ X, when starting from a vertex x ∈ X. The set of extinction probability vectors (obtained letting A vary among all subsets of X) is a subset of the set of the fixed points of the generating function of the branching random walk. In particular here we are interested in the cardinality of the set of extinction probability vectors. We prove results which allow to understand whether the probability of extinction in a set A is different from the one of extinction in another set B. In many cases there are only two possible extinction probability vectors and so far, in more compli-cated examples, only a finite number of distinct extinction probability vectors had been explicitly found. Whether a branching random walk could have an infinite number of distinct extinction probability vectors was not known. We apply our results to construct examples of branching random walks with un-countably many distinct extinction probability vectors.

Branching random walks with uncountably many extinction probability vectors

D. Bertacchi;F. Zucca
2020-01-01

Abstract

Given a branching random walk on a set X, we study its extinction probability vectors q(·,A). Their components are the probability that the process goes extinct in a fixed A ⊆ X, when starting from a vertex x ∈ X. The set of extinction probability vectors (obtained letting A vary among all subsets of X) is a subset of the set of the fixed points of the generating function of the branching random walk. In particular here we are interested in the cardinality of the set of extinction probability vectors. We prove results which allow to understand whether the probability of extinction in a set A is different from the one of extinction in another set B. In many cases there are only two possible extinction probability vectors and so far, in more compli-cated examples, only a finite number of distinct extinction probability vectors had been explicitly found. Whether a branching random walk could have an infinite number of distinct extinction probability vectors was not known. We apply our results to construct examples of branching random walks with un-countably many distinct extinction probability vectors.
File in questo prodotto:
File Dimensione Formato  
BJPS430.pdf

Accesso riservato

: Publisher’s version
Dimensione 200.33 kB
Formato Adobe PDF
200.33 kB Adobe PDF   Visualizza/Apri
11311-1073110_Bertacchi.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 236.95 kB
Formato Adobe PDF
236.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1073110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact