Shrinking of device dimensions has undoubtedly enabled the very large scale integration of transistors on electronic chips. However, it has also brought to surface time-zero and time-dependent variation phenomena that degrade system's performance and threaten functional operation. Hence, the need to capture and describe these mechanisms, as well as effectively model their impact is crucial. To this extent, we follow existing models and propose a complete framework that evaluates failure probability of electronic components. To assess our framework, a case-study of packet-switched Network on Chip (NoC) routers is presented, studying the failure probability of its SRAM buffers.

Fast Estimations of Failure Probability Over Long Time Spans

Zoni, Davide;
2018-01-01

Abstract

Shrinking of device dimensions has undoubtedly enabled the very large scale integration of transistors on electronic chips. However, it has also brought to surface time-zero and time-dependent variation phenomena that degrade system's performance and threaten functional operation. Hence, the need to capture and describe these mechanisms, as well as effectively model their impact is crucial. To this extent, we follow existing models and propose a complete framework that evaluates failure probability of electronic components. To assess our framework, a case-study of packet-switched Network on Chip (NoC) routers is presented, studying the failure probability of its SRAM buffers.
2018
NANOARCH '18 Proceedings of the 14th IEEE/ACM International Symposium on Nanoscale Architectures
9781450358156
Network on Chip (NoC)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1072940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact