Hierarchical model reduction is intended to solve efficiently partial differential equations in domains with a geometrically dominant direction. In many engineering applications, these problems are often reduced to 1-dimensional differential systems. This guarantees computational efficiency yet dumps local accuracy as nonaxial dynamics are dropped. Hierarchical model reduction recovers the secondary components of the dynamics of interest with a combination of different discretization techniques, following up a natural separation of variables. The dominant direction is generally solved by the finite element method or isogeometric analysis to guarantee flexibility, while the transverse components are solved by spectral methods, to guarantee a small number of degrees of freedom. By judiciously selecting the number of transverse modes, the method has been proven to improve significantly the accuracy of purely 1-dimensional solvers, with great computational efficiency. A Cartesian framework has been used so far both in slab domains and cylindrical pipes (including arteries) mapped to Cartesian reference domains. In this paper, we investigate the alternative use of a polar coordinates system for the transverse dynamics in circular or elliptical pipes. This seems a natural choice for applications like computational hemodynamics. In spite of this, the selection of a basis function set for the transverse dynamics is troublesome. As pointed out in the literature—even for simple elliptical problems—there is no “best” basis available. In this paper, we perform an extensive investigation of hierarchical model reduction in polar coordinates to discuss different possible choices for the transverse basis, pointing out pros and cons of the polar coordinate system.

Hierarchical model reduction for incompressible fluids in pipes

Perotto, Simona;
2018-01-01

Abstract

Hierarchical model reduction is intended to solve efficiently partial differential equations in domains with a geometrically dominant direction. In many engineering applications, these problems are often reduced to 1-dimensional differential systems. This guarantees computational efficiency yet dumps local accuracy as nonaxial dynamics are dropped. Hierarchical model reduction recovers the secondary components of the dynamics of interest with a combination of different discretization techniques, following up a natural separation of variables. The dominant direction is generally solved by the finite element method or isogeometric analysis to guarantee flexibility, while the transverse components are solved by spectral methods, to guarantee a small number of degrees of freedom. By judiciously selecting the number of transverse modes, the method has been proven to improve significantly the accuracy of purely 1-dimensional solvers, with great computational efficiency. A Cartesian framework has been used so far both in slab domains and cylindrical pipes (including arteries) mapped to Cartesian reference domains. In this paper, we investigate the alternative use of a polar coordinates system for the transverse dynamics in circular or elliptical pipes. This seems a natural choice for applications like computational hemodynamics. In spite of this, the selection of a basis function set for the transverse dynamics is troublesome. As pointed out in the literature—even for simple elliptical problems—there is no “best” basis available. In this paper, we perform an extensive investigation of hierarchical model reduction in polar coordinates to discuss different possible choices for the transverse basis, pointing out pros and cons of the polar coordinate system.
2018
cylindrical domains; finite elements; internal incompressible fluid dynamics; model reduction; spectral methods; Numerical Analysis; Engineering (all); Applied Mathematics
File in questo prodotto:
File Dimensione Formato  
GuzzettiPerottoVeneziani_IJNME18.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1072763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact