We prove that every Banach space which admits an unconditional basis can be renormed to contain a constant width set with empty interior, thus guaranteeing, for the first time, existence of such sets in a reflexive space. In the isometric case we prove that normal structure is characterized by the property that the class of diametrically complete sets and the class of sets with constant radius from the boundary coincide.

Thin sets of constant width

E. Maluta;
2019-01-01

Abstract

We prove that every Banach space which admits an unconditional basis can be renormed to contain a constant width set with empty interior, thus guaranteeing, for the first time, existence of such sets in a reflexive space. In the isometric case we prove that normal structure is characterized by the property that the class of diametrically complete sets and the class of sets with constant radius from the boundary coincide.
2019
constant width, diametrically complete set, reflexive space, normal structure
File in questo prodotto:
File Dimensione Formato  
Maluta_Yost_pubbl.pdf

Accesso riservato

Descrizione: Articolo principale
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 319.66 kB
Formato Adobe PDF
319.66 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1072752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 6
social impact