The most common defects in laser powder bed fusion (LPBF) namely porosity, geometrical errors, roughness and thermal deformations are principally linked with the energy input to the process. In common practice, a single set of process parameters is used to produce a whole component independently from the dimensions of the actual scan path within a given layer. However, melt pool stability is highly dependent on the scanned geometry. A possible strategy to maintain a constant melt pool is the mixed use of pulsed wave (PW) and continuous wave (CW) emission regimes. Accordingly, this work investigates the complementary use of continuous and modulated emission at fixed energy density on large and thin sections respectively. The proposed approach is tested on AISI 316L stainless steel and melt pool observations are conducted employing a coaxial monitoring system built for purpose. Temporally resolved measurements of intensity and geometrical properties of the melt pool were extracted as well as a three-dimensional spatial mapping of the molten pool area. The results demonstrate that moving from CW to a PW regime at the transition zones to thinner sections is effective in maintaining a constant melt pool size thus avoiding heat build-up and part extrusion from the powder bed.

Complementary use of pulsed and continuous wave emission modes to stabilize melt pool geometry in laser powder bed fusion

Demir, Ali Gökhan;Mazzoleni, Luca;Caprio, Leonardo;Pacher, Matteo;Previtali, Barbara
2019-01-01

Abstract

The most common defects in laser powder bed fusion (LPBF) namely porosity, geometrical errors, roughness and thermal deformations are principally linked with the energy input to the process. In common practice, a single set of process parameters is used to produce a whole component independently from the dimensions of the actual scan path within a given layer. However, melt pool stability is highly dependent on the scanned geometry. A possible strategy to maintain a constant melt pool is the mixed use of pulsed wave (PW) and continuous wave (CW) emission regimes. Accordingly, this work investigates the complementary use of continuous and modulated emission at fixed energy density on large and thin sections respectively. The proposed approach is tested on AISI 316L stainless steel and melt pool observations are conducted employing a coaxial monitoring system built for purpose. Temporally resolved measurements of intensity and geometrical properties of the melt pool were extracted as well as a three-dimensional spatial mapping of the molten pool area. The results demonstrate that moving from CW to a PW regime at the transition zones to thinner sections is effective in maintaining a constant melt pool size thus avoiding heat build-up and part extrusion from the powder bed.
2019
Selective laser melting, Molten pool monitoring, CW emission, PW emission, Stainless steel
File in questo prodotto:
File Dimensione Formato  
Complementary use of pulsed and continuous wave emission modes to stabilize melt pool geometry in laser powder bed fusion.pdf

Accesso riservato

: Publisher’s version
Dimensione 4.47 MB
Formato Adobe PDF
4.47 MB Adobe PDF   Visualizza/Apri
Mixedwave_pp (1).pdf

Open Access dal 20/12/2020

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1071071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 34
social impact