In the industrial panorama, Laser Powder Bed Fusion (LPBF) systems enable for the near net shaping of metal powders into complex geometries with unique design features. This makes the technology appealing for many industrial applications, which require high performance materials combined with lightweight design or conformal cooling channels. However, many of the alloys that would be ideal for the realisation of these functional components are classified as difficultly weldable due to their cracking sensitivity. Currently, industrial SLM systems employ baseplate preheating to minimise these effects although this solution is limitedly effective along the build direction and often does not achieve high enough temperatures for the realisation of crack-free specimen. In this work, the design and implementation of a novel inductive high temperature LPBF system is presented. Furthermore, preliminary results regarding depositions of Titanium Aluminide alloy with and without preheating are reported, showing the potential of the solution developed.
Development of Novel High Temperature Laser Powder Bed Fusion System for the Processing of Crack-Susceptible Alloys
L. Caprio;CHIARI, GIANMARCO;A. G. Demir;B. Previtali
2018-01-01
Abstract
In the industrial panorama, Laser Powder Bed Fusion (LPBF) systems enable for the near net shaping of metal powders into complex geometries with unique design features. This makes the technology appealing for many industrial applications, which require high performance materials combined with lightweight design or conformal cooling channels. However, many of the alloys that would be ideal for the realisation of these functional components are classified as difficultly weldable due to their cracking sensitivity. Currently, industrial SLM systems employ baseplate preheating to minimise these effects although this solution is limitedly effective along the build direction and often does not achieve high enough temperatures for the realisation of crack-free specimen. In this work, the design and implementation of a novel inductive high temperature LPBF system is presented. Furthermore, preliminary results regarding depositions of Titanium Aluminide alloy with and without preheating are reported, showing the potential of the solution developed.File | Dimensione | Formato | |
---|---|---|---|
Development of novel high temperature laser powder bed fusion system for the processing of crack-susceptible alloys.pdf
accesso aperto
:
Publisher’s version
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.