We propose a new methodology for the analysis of spatial fields of object data distributed over complex domains. Our approach enables to jointly handle both data and domain complexities, through a divide et impera approach. As a key element of innovation, we propose to use a random domain decomposition, whose realizations define sets of homogeneous sub-regions where to perform simple, independent, weak local analyses (divide), eventually aggregated into a final strong one (impera). In this broad framework, the complexity of the domain (e.g., strong concavities, holes or barriers) can be accounted for by defining its partitions on the basis of a suitable metric, which allows to properly represent the adjacency relationships among the complex data (such as scalar, functional or constrained data) over the domain. As an illustration of the potential of the methodology, we consider the analysis and spatial prediction (Kriging) of the probability density function of dissolved oxygen in the Chesapeake Bay.

Random domain decompositions for object-oriented Kriging over complex domains

Alessandra Menafoglio;GAETANI, GIORGIA;Piercesare Secchi
2018-01-01

Abstract

We propose a new methodology for the analysis of spatial fields of object data distributed over complex domains. Our approach enables to jointly handle both data and domain complexities, through a divide et impera approach. As a key element of innovation, we propose to use a random domain decomposition, whose realizations define sets of homogeneous sub-regions where to perform simple, independent, weak local analyses (divide), eventually aggregated into a final strong one (impera). In this broad framework, the complexity of the domain (e.g., strong concavities, holes or barriers) can be accounted for by defining its partitions on the basis of a suitable metric, which allows to properly represent the adjacency relationships among the complex data (such as scalar, functional or constrained data) over the domain. As an illustration of the potential of the methodology, we consider the analysis and spatial prediction (Kriging) of the probability density function of dissolved oxygen in the Chesapeake Bay.
2018
Object oriented data analysis, Spatial dependence, Local stationarity, Variogram kernel estimator,Bayes spaces
File in questo prodotto:
File Dimensione Formato  
10-2018.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 18.83 MB
Formato Adobe PDF
18.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1069736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact