In this work, a three-dimensional finite-element model of athletic tracks is presented. The model is based on data from quasi-static compression tests performed on small laboratory samples, to tune the constitutive parameters. The model was validated on three different athletic tracks, considering their top and bottom layers. Model predictions compared well with the results of shock absorption tests performed using a standard artificial athlete system, with relative errors of a few percent in terms of shock absorption. The model was then used to investigate the effect of the geometric structure of different tracks on their shock absorption capabilities. In particular, a reduction in size of the bottom layer cell pattern increased cushioning; the same property was shown to depend on the pattern voids depth in a non-monotonic way. A maximum in shock absorption was found for a void depth value about 40% higher than the one currently used in the analysed track patterns.
Modelling the cushioning properties of athletic tracks
Andena, Luca;Aleo, Serena;Caimmi, Francesco;Briatico-Vangosa, Francesco;Mariani, Stefano;Tagliabue, Stefano;Pavan, Andrea
2018-01-01
Abstract
In this work, a three-dimensional finite-element model of athletic tracks is presented. The model is based on data from quasi-static compression tests performed on small laboratory samples, to tune the constitutive parameters. The model was validated on three different athletic tracks, considering their top and bottom layers. Model predictions compared well with the results of shock absorption tests performed using a standard artificial athlete system, with relative errors of a few percent in terms of shock absorption. The model was then used to investigate the effect of the geometric structure of different tracks on their shock absorption capabilities. In particular, a reduction in size of the bottom layer cell pattern increased cushioning; the same property was shown to depend on the pattern voids depth in a non-monotonic way. A maximum in shock absorption was found for a void depth value about 40% higher than the one currently used in the analysed track patterns.File | Dimensione | Formato | |
---|---|---|---|
Modelling the cushioning properties of athletic tracks .pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
657.91 kB
Formato
Adobe PDF
|
657.91 kB | Adobe PDF | Visualizza/Apri |
10.1007_s12283-018-0292-z.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.61 MB
Formato
Adobe PDF
|
2.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.