The four wave mixing (FWM) process is widely exploited for the generation of tunable ultrashort light pulses. Usually this process is driven in bulk materials, which are however prone to optical damage at high pump laser intensities. A tunable source of ultrashort 10 mu J level pulses in the visible spectral region is described here. In particular, we report on the implementation of FWM driven by a two-color ultrafast laser pulse inside a gas-filled hollow core fiber (HCF). Due to the high-damage threshold and the long interaction distance, the HCF-based FWM configuration proves to be suitable for high-energy applications. Moreover, this technique can be potentially used for ultrashort pulses generation within a wide range of spectral regions; a discussion on the possibility to extend our scheme to the generation of few-cycle mid-IR pulse is provided.

Generation of ultrashort pulses by four wave mixing in a gas-filled hollow core fiber

Ciriolo, Anna G;Pusala, Aditya;Devetta, Michele;Faccialà, Davide;Vozzi, Caterina;Stagira, Salvatore
2018-01-01

Abstract

The four wave mixing (FWM) process is widely exploited for the generation of tunable ultrashort light pulses. Usually this process is driven in bulk materials, which are however prone to optical damage at high pump laser intensities. A tunable source of ultrashort 10 mu J level pulses in the visible spectral region is described here. In particular, we report on the implementation of FWM driven by a two-color ultrafast laser pulse inside a gas-filled hollow core fiber (HCF). Due to the high-damage threshold and the long interaction distance, the HCF-based FWM configuration proves to be suitable for high-energy applications. Moreover, this technique can be potentially used for ultrashort pulses generation within a wide range of spectral regions; a discussion on the possibility to extend our scheme to the generation of few-cycle mid-IR pulse is provided.
2018
nonlinear wave mixing; nonlinear optics; parametric processes; ultrafast nonlinear optics
File in questo prodotto:
File Dimensione Formato  
Ciriolo_2018_J._Opt._20_125503.pdf

accesso aperto

: Publisher’s version
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1069603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact