The goal of the HARPA solution is to overcome the performance variability (PV) by enabling next-generation embedded and high-performance platforms using heterogeneous many-core processors to provide cost-effectively dependable performance: the correct functionality and (where needed) timing guarantees throughout the expected lifetime of a platform. This must be accomplished in the presence of cycle-by-cycle performance variability due to time-dependent variations in silicon devices and wires under thermal, power, and energy constraints. The common challenge for both embedded and high-performance systems is to harness the unsustainable increases in design and operational margins and yet provide dependable performance. For example, resources that are statically determined based on worst-case execution time for real-time applications or lower clock frequency to satisfy excessive timing margins in high-performance processors.

The HARPA Approach to Ensure Dependable Performance

Giuseppe Massari;Simone Libutti;William Fornaciari;
2019-01-01

Abstract

The goal of the HARPA solution is to overcome the performance variability (PV) by enabling next-generation embedded and high-performance platforms using heterogeneous many-core processors to provide cost-effectively dependable performance: the correct functionality and (where needed) timing guarantees throughout the expected lifetime of a platform. This must be accomplished in the presence of cycle-by-cycle performance variability due to time-dependent variations in silicon devices and wires under thermal, power, and energy constraints. The common challenge for both embedded and high-performance systems is to harness the unsustainable increases in design and operational margins and yet provide dependable performance. For example, resources that are statically determined based on worst-case execution time for real-time applications or lower clock frequency to satisfy excessive timing margins in high-performance processors.
2019
Harnessing Performance Variability in Embedded and High-performance Many/Multi-core Platforms
978-3-319-91961-4
978-3-319-91962-1
low power, thermal control, reliability, energy management, reliability, run-time management
File in questo prodotto:
File Dimensione Formato  
CH1.pdf

Accesso riservato

Descrizione: pre print
: Pre-Print (o Pre-Refereeing)
Dimensione 459.71 kB
Formato Adobe PDF
459.71 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1066938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact