In this contribution, a computational framework for the analysis of tertiary concrete creep is presented, combining a discrete element framework with linear visco-elasticity and rate-dependency of damage. The Lattice Discrete Particle Model (LDPM) serves as constitutive model. Aging visco-elasticity is implemented based on the Micro-Prestress-Solidification (MPS) theory, linking the mechanical response to the underlying physical and chemical processes of hydration, heat transfer and moisture transport through a multi-physics approach. The numerical framework is calibrated on literature data, which include tensile and compressive creep tests, and tests at various loading rates. Afterwards, the framework is validated on time-to-failure tests, both for flexure and compression. It is shown that the numerical framework is capable of predicting the time-dependent evolution of concrete creep deformations in the primary, secondary but also tertiary domains, including very accurate estimates of times to failure. Finally, a predictive numerical study on the time-to-failure response is presented for load levels that are difficult to test experimentally, showing a deviation from the simple linear trend that is commonly assumed. Ultimately, two alternative functions for time-to-failure curves are proposed that are mechanically justified and in good agreement with both, experimental data and numerical simulations.

Discrete element framework for modeling tertiary creep of concrete in tension and compression

Giovanni Di Luzio;
2018-01-01

Abstract

In this contribution, a computational framework for the analysis of tertiary concrete creep is presented, combining a discrete element framework with linear visco-elasticity and rate-dependency of damage. The Lattice Discrete Particle Model (LDPM) serves as constitutive model. Aging visco-elasticity is implemented based on the Micro-Prestress-Solidification (MPS) theory, linking the mechanical response to the underlying physical and chemical processes of hydration, heat transfer and moisture transport through a multi-physics approach. The numerical framework is calibrated on literature data, which include tensile and compressive creep tests, and tests at various loading rates. Afterwards, the framework is validated on time-to-failure tests, both for flexure and compression. It is shown that the numerical framework is capable of predicting the time-dependent evolution of concrete creep deformations in the primary, secondary but also tertiary domains, including very accurate estimates of times to failure. Finally, a predictive numerical study on the time-to-failure response is presented for load levels that are difficult to test experimentally, showing a deviation from the simple linear trend that is commonly assumed. Ultimately, two alternative functions for time-to-failure curves are proposed that are mechanically justified and in good agreement with both, experimental data and numerical simulations.
2018
Lattice discrete particle model; Micro-prestress; Rate effect; Solidification; Time to failure; Materials Science (all); Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
EFM_2018_207_Original_V01pdf.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1066547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 32
social impact