The most adopted methods to produce polymer nanoparticles (NPs) for medical and pharmaceutical applications use surfactants that are toxic and physically adsorbed to the NPs, with the risk of desorption and insurgence of side effects. A valid alternative is represented by the use of surfmers, reactive surfactants that are chemically linked to the polymer chains, thus avoiding the release of toxic species. In this case, the lack of biodegradable surfmers introduces the concern of polymer accumulation into the body. In this work, biodegradable, poly(ethylene glycol) (PEG)ylated N-(2-hydroxypropyl) methacrylamide (HPMA) based surfmers are synthesized and used to stabilize lipophilic NPs. In particular, the NP core is made from a macromonomer comprising a poly(lactic acid) (PLA) chain functionalized with HPMA double bond. The NP forming polymer chains are then constituted by a uniform poly(HPMA) backbone that is biocompatible and water soluble and hydrolysable PEG and PLA pendants assuring the complete degradability of the polymer. The stability provided to these NPs by the synthesized surfmers is studied in the cases of both emulsion free radical polymerization and solution free radical polymerization followed by the flash nanoprecipitation of the obtained amphiphilic copolymers.

HPMA-PEG Surfmers and Their Use in Stabilizing Fully Biodegradable Polymer Nanoparticles

Mattia SPonchioni;umberto capasso palmiero;davide moscatelli
2017-01-01

Abstract

The most adopted methods to produce polymer nanoparticles (NPs) for medical and pharmaceutical applications use surfactants that are toxic and physically adsorbed to the NPs, with the risk of desorption and insurgence of side effects. A valid alternative is represented by the use of surfmers, reactive surfactants that are chemically linked to the polymer chains, thus avoiding the release of toxic species. In this case, the lack of biodegradable surfmers introduces the concern of polymer accumulation into the body. In this work, biodegradable, poly(ethylene glycol) (PEG)ylated N-(2-hydroxypropyl) methacrylamide (HPMA) based surfmers are synthesized and used to stabilize lipophilic NPs. In particular, the NP core is made from a macromonomer comprising a poly(lactic acid) (PLA) chain functionalized with HPMA double bond. The NP forming polymer chains are then constituted by a uniform poly(HPMA) backbone that is biocompatible and water soluble and hydrolysable PEG and PLA pendants assuring the complete degradability of the polymer. The stability provided to these NPs by the synthesized surfmers is studied in the cases of both emulsion free radical polymerization and solution free radical polymerization followed by the flash nanoprecipitation of the obtained amphiphilic copolymers.
2017
biodegradable; drug delivery; HPMA; PEG; surfmers; Condensed Matter Physics; Physical and Theoretical Chemistry; Polymers and Plastics; Organic Chemistry; Materials Chemistry2506 Metals and Alloys
File in questo prodotto:
File Dimensione Formato  
2017 - Sponchioni - Moscatelli - Macromolecular Chemistry and Physics - HPMA-PEG Surfmers and their Employment in the Synthesis of Fully Biodegradable Polymer Nanoparticles.pdf

Accesso riservato

Descrizione: hpma mattia
: Publisher’s version
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1066219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact