This paper presents the steps conducted to design and develop an IT Tool for Visual Data Analysis within the SPEET (Student Profile for Enhancing Engineering Tutoring) ERASMUS+ project. The global goals of the project are to provide insight into student behaviours, to identify patterns and relevant factors of academic success, to facilitate the discovery and understanding of profiles of engineering students, and to analyse the differences across European institutions. Those goals are partly covered by the visualisations that the proposed tool comprises. Specifically, the aim is to provide support to the staff involved in tutoring, facilitating the exploratory analysis that might lead them to discover and understand student profiles. For that purpose, visual interaction and two main approaches are used, one based on the joint display of interconnected visualisations and the other focused on dimensionality reduction. The tool is validated on a data set that includes variables present in a typical student record.

Speet: Visual data analysis of engineering students performance from academic Data?

U. Spagnolini;A. Paganoni
2018

Abstract

This paper presents the steps conducted to design and develop an IT Tool for Visual Data Analysis within the SPEET (Student Profile for Enhancing Engineering Tutoring) ERASMUS+ project. The global goals of the project are to provide insight into student behaviours, to identify patterns and relevant factors of academic success, to facilitate the discovery and understanding of profiles of engineering students, and to analyse the differences across European institutions. Those goals are partly covered by the visualisations that the proposed tool comprises. Specifically, the aim is to provide support to the staff involved in tutoring, facilitating the exploratory analysis that might lead them to discover and understand student profiles. For that purpose, visual interaction and two main approaches are used, one based on the joint display of interconnected visualisations and the other focused on dimensionality reduction. The tool is validated on a data set that includes variables present in a typical student record.
CEUR Workshop Proceedings
Academic Data; Dimensionality Reduction; Visual Analytics; Computer Science (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1066217
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact