We consider Isogeometric Analysis (IGA) for the numerical solution of the electrophysiology of the atria, which in this work is modeled by means of the bidomain equations on thin surfaces. First, we consider the bidomain equations coupled with the Roger–McCulloch ionic model on simple slabs. Here, our goal is to evaluate the effects of the spatial discretization by IGA and the use of different B-spline basis functions on the accuracy of the approximation, in particular regarding the accuracy of the front velocity and the dispersion error. Specifically, we consider basis functions with high polynomial degree, p, and global high order continuity, C^{p−1}, in the computational domain: our results show that the use of such basis functions is beneficial to the accurate approximation of the solution. Then, we consider a realistic application of the bidomain equations coupled with the Courtemanche–Ramirez–Nattel ionic model on the two human atria, which are represented by means of two NURBS surfaces.

Isogeometric Analysis of the electrophysiology in the human heart: Numerical simulation of the bidomain equations on the atria

L. Dede';A. Quarteroni
2019-01-01

Abstract

We consider Isogeometric Analysis (IGA) for the numerical solution of the electrophysiology of the atria, which in this work is modeled by means of the bidomain equations on thin surfaces. First, we consider the bidomain equations coupled with the Roger–McCulloch ionic model on simple slabs. Here, our goal is to evaluate the effects of the spatial discretization by IGA and the use of different B-spline basis functions on the accuracy of the approximation, in particular regarding the accuracy of the front velocity and the dispersion error. Specifically, we consider basis functions with high polynomial degree, p, and global high order continuity, C^{p−1}, in the computational domain: our results show that the use of such basis functions is beneficial to the accurate approximation of the solution. Then, we consider a realistic application of the bidomain equations coupled with the Courtemanche–Ramirez–Nattel ionic model on the two human atria, which are represented by means of two NURBS surfaces.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0045782518304304-main.pdf

accesso aperto

: Publisher’s version
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri
11311-1066014_Dedè.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 3.34 MB
Formato Adobe PDF
3.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1066014
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact