Laser metal deposition (LMD) is an additive manufacturing technique, whose performances can be influenced by several factors and parameters. Monitoring their evolution allows for a better comprehension and control of the process, hence enhancing the deposition quality. In particular, the deposition height is an important variable that, if it does not match the process growth, can bring to defects and geometrical inaccuracies in the deposited structures. The current work presents a system based on optical triangulation for the height monitoring, implemented on a LMD setup composed of a fiber laser, a deposition head, and an anthropomorphic robot. Its coaxial and non-intrusive configuration allows for flexibility in the deposition strategy and direction. A measurement laser beam is launched through the powder nozzle and hits the melt pool. A coaxial camera acquires the probe spot, whose position is converted to relative height. The device has been demonstrated for monitoring the deposition of a stainless steel cylinder. The measurements allowed to reconstruct a spatial map of the height variation, highlighting a transient in the deposition growth which can be explained in terms of a self-regulating mechanism for the layer thickness.

Monitoring of laser metal deposition height by means of coaxial laser triangulation

Simone Donadello;MOTTA, MAURIZIO;Ali Gökhan Demir;Barbara Previtali
2019-01-01

Abstract

Laser metal deposition (LMD) is an additive manufacturing technique, whose performances can be influenced by several factors and parameters. Monitoring their evolution allows for a better comprehension and control of the process, hence enhancing the deposition quality. In particular, the deposition height is an important variable that, if it does not match the process growth, can bring to defects and geometrical inaccuracies in the deposited structures. The current work presents a system based on optical triangulation for the height monitoring, implemented on a LMD setup composed of a fiber laser, a deposition head, and an anthropomorphic robot. Its coaxial and non-intrusive configuration allows for flexibility in the deposition strategy and direction. A measurement laser beam is launched through the powder nozzle and hits the melt pool. A coaxial camera acquires the probe spot, whose position is converted to relative height. The device has been demonstrated for monitoring the deposition of a stainless steel cylinder. The measurements allowed to reconstruct a spatial map of the height variation, highlighting a transient in the deposition growth which can be explained in terms of a self-regulating mechanism for the layer thickness.
2019
Additive manufacturing; Directed energy deposition; Laser metal deposition; Laser triangulation; Optical monitoring; Electronic, Optical and Magnetic Materials; Atomic and Molecular Physics, and Optics; Mechanical Engineering; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
Monitoring of laser metal deposition height by means of coaxial laser triangulation.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF   Visualizza/Apri
LMDheight_pp (1).pdf

Open Access dal 25/09/2020

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1065662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 56
social impact