We show that classical supervised Machine Learning techniques, after trained with a large number of optimal RWA configurations solved via ILP, can rapidly procure the most appropriate RWA configuration to be applied for a new traffic matrix.

Is Machine Learning Suitable for Solving RWA Problems in Optical Networks?

Sebastian Troia;Francesco Musumeci;Guido Maier;
2018-01-01

Abstract

We show that classical supervised Machine Learning techniques, after trained with a large number of optimal RWA configurations solved via ILP, can rapidly procure the most appropriate RWA configuration to be applied for a new traffic matrix.
2018
Proceedings of ECOC 2018
978-153864862-9
File in questo prodotto:
File Dimensione Formato  
ecoc-paper-2018.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 363.99 kB
Formato Adobe PDF
363.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1065480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 0
social impact