This paper discusses the performance of micro-electro-discharge machining (micro-EDM) process using different flushing media. Several tests have been performed considering a hardened steel thin workpiece machined via micro-EDM drilling and through-trench and different flushing fluids: deionized water, tap water, deionized water with Garnet, tap water with Garnet. Garnet is the abrasive material exploited in the micro-AWJ and the concentration per liter of water considered in micro-EDM experiments is the same as required in micro-abrasive water jet (micro-AWJ) machining. A customized system has been built on micro-EDM Sarix SX 200 HP machine to allow the water-based fluid refill and liquid level monitoring during the experiments. The micro-EDM trials have been carried out considering two machining regimes, roughing and semi finishing. The different water-based fluids have different electrical conductivities, which lead to different machining performance. Material removal rate (MRR) and tool wear ratio (TWR) have been estimated in terms of average and standard deviation. The results show that the presence of Garnet does not affect MRR consistently, since the particles do not play an active role in the erosion process but affect surface quality, as proved by the inspection of crater morphology and dimensions estimation performed via confocal microscope. For the considered experiments, MRR is generally increased as the conductivity decreases, in particular when semi-finishing regime is used. Also TWR decreases dramatically with the use of water-based fluids, since a protective recast layer is also deposited on the tool tip preventing wearing. Our analysis shows that micro-EDM can be successfully performed using the same liquid (water and abrasive) used in micro-AWJ, and so paves the way towards the implementation of a hybrid process based on micro-AWJ and micro-EDM technologies.

Study about the Influence of Powder Mixed Water Based Fluid on Micro-EDM Process

Viganò, F.;Annoni, M.;
2018-01-01

Abstract

This paper discusses the performance of micro-electro-discharge machining (micro-EDM) process using different flushing media. Several tests have been performed considering a hardened steel thin workpiece machined via micro-EDM drilling and through-trench and different flushing fluids: deionized water, tap water, deionized water with Garnet, tap water with Garnet. Garnet is the abrasive material exploited in the micro-AWJ and the concentration per liter of water considered in micro-EDM experiments is the same as required in micro-abrasive water jet (micro-AWJ) machining. A customized system has been built on micro-EDM Sarix SX 200 HP machine to allow the water-based fluid refill and liquid level monitoring during the experiments. The micro-EDM trials have been carried out considering two machining regimes, roughing and semi finishing. The different water-based fluids have different electrical conductivities, which lead to different machining performance. Material removal rate (MRR) and tool wear ratio (TWR) have been estimated in terms of average and standard deviation. The results show that the presence of Garnet does not affect MRR consistently, since the particles do not play an active role in the erosion process but affect surface quality, as proved by the inspection of crater morphology and dimensions estimation performed via confocal microscope. For the considered experiments, MRR is generally increased as the conductivity decreases, in particular when semi-finishing regime is used. Also TWR decreases dramatically with the use of water-based fluids, since a protective recast layer is also deposited on the tool tip preventing wearing. Our analysis shows that micro-EDM can be successfully performed using the same liquid (water and abrasive) used in micro-AWJ, and so paves the way towards the implementation of a hybrid process based on micro-AWJ and micro-EDM technologies.
2018
19th CIRP Conference on Electro Physical and Electro Chemical Machining 2018
Flushing fluid; Hybrid process; Machining performance; Micro-AWJ; Micro-EDM; Control and Systems Engineering; Industrial and Manufacturing Engineering
File in questo prodotto:
File Dimensione Formato  
Study about the Influence of powder mixed water based fluid on micro-EDM process.pdf

accesso aperto

: Publisher’s version
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1064699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 10
social impact