Flat membranes with controlled morphology, pore dimensions, mechanical properties and crystal structure were prepared by wet and dry wet phase inversion from polyvinylidene fluoride (PVDF). The effects of several parameters such as precipitation temperature, composition of the polymer solution (concentration, type of solvent), exposure time before immersion in the coagulation bath, type of coagulant on the sequence and the extent of the two phase separation processes, i.e. liquid-liquid and liquid-solid demixing (crystallization), were studied. Using solvent/nonsolvent pairs with different mutual affinity (DMA/water, DMA/C1-C8 alcohols), different morphologies were obtained. High casting solution temperature plays important role to increase the rate of the liquid-liquid demixing on the crystallization, i.e. the type of crystallites formed (α-type) also by using a soft coagulation bath. Exposure time before immersion favours the first type of phase separation and therefore once again crystallites of α type were observed. At room temperature, using C1-C8 alcohols as nonsolvents, the presence of crystallites of α type can be related to molar volume of the coagulant. © 2007 Elsevier Ltd. All rights reserved.
Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties
Macchi, P.;
2007-01-01
Abstract
Flat membranes with controlled morphology, pore dimensions, mechanical properties and crystal structure were prepared by wet and dry wet phase inversion from polyvinylidene fluoride (PVDF). The effects of several parameters such as precipitation temperature, composition of the polymer solution (concentration, type of solvent), exposure time before immersion in the coagulation bath, type of coagulant on the sequence and the extent of the two phase separation processes, i.e. liquid-liquid and liquid-solid demixing (crystallization), were studied. Using solvent/nonsolvent pairs with different mutual affinity (DMA/water, DMA/C1-C8 alcohols), different morphologies were obtained. High casting solution temperature plays important role to increase the rate of the liquid-liquid demixing on the crystallization, i.e. the type of crystallites formed (α-type) also by using a soft coagulation bath. Exposure time before immersion favours the first type of phase separation and therefore once again crystallites of α type were observed. At room temperature, using C1-C8 alcohols as nonsolvents, the presence of crystallites of α type can be related to molar volume of the coagulant. © 2007 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.