Patent data represent a significant source of information on innovation, knowledge production, and the evolution of technology through networks of citations, co-invention and co-assignment. A major obstacle to extracting useful information from this data is the problem of name disambiguation: Linking alternate spellings of individuals or institutions to a single identifier to uniquely determine the parties involved in knowledge production and diffusion. In this paper, we describe a new algorithm that uses high-resolution geolocation to disambiguate both inventors and assignees on about 8.5 million patents found in the European Patent Office (EPO), under the Patent Cooperation Treaty (PCT), and in the US Patent and Trademark Office (USPTO). We show this disambiguation is consistent with a number of ground-truth benchmarks of both assignees and inventors, significantly outperforming the use of undisambiguated names to identify unique entities. A significant benefit of this work is the high quality assignee disambiguation with coverage across the world coupled with an inventor disambiguation (that is competitive with other state of the art approaches) in multiple patent offices.

Disambiguation of patent inventors and assignees using high-resolution geolocation data

Pammolli, Fabio
2017

Abstract

Patent data represent a significant source of information on innovation, knowledge production, and the evolution of technology through networks of citations, co-invention and co-assignment. A major obstacle to extracting useful information from this data is the problem of name disambiguation: Linking alternate spellings of individuals or institutions to a single identifier to uniquely determine the parties involved in knowledge production and diffusion. In this paper, we describe a new algorithm that uses high-resolution geolocation to disambiguate both inventors and assignees on about 8.5 million patents found in the European Patent Office (EPO), under the Patent Cooperation Treaty (PCT), and in the US Patent and Trademark Office (USPTO). We show this disambiguation is consistent with a number of ground-truth benchmarks of both assignees and inventors, significantly outperforming the use of undisambiguated names to identify unique entities. A significant benefit of this work is the high quality assignee disambiguation with coverage across the world coupled with an inventor disambiguation (that is competitive with other state of the art approaches) in multiple patent offices.
3304; Library and Information Sciences; Computer Science Applications1707 Computer Vision and Pattern Recognition; Information Systems; Statistics, Probability and Uncertainty; Statistics and Probability
File in questo prodotto:
File Dimensione Formato  
11311-1063480_Pammolli.pdf

accesso aperto

: Publisher’s version
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1063480
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact