Understanding corneal biomechanics is important for applications regarding refractive surgery prediction outcomes and the study of pathologies affecting the cornea itself. In this regard, non-contact tonometry (NCT) is gaining interest as a non-invasive diagnostic tool in ophthalmology, and is becoming an alternative method to characterize corneal biomechanics in vivo. In general, identification of material parameters of the cornea from a NCT test relies on the inverse finite element method, for which an accurate and reliable modelization of the test is required. This study explores four different modeling strategies ranging from pure structural analysis up to a fluid–structure interaction model considering the air–cornea and humor–cornea interactions. The four approaches have been compared using clinical biomarkers commonly used in ophthalmology. Results from the simulations indicate the importance of considering the humors as fluids and the deformation of the cornea when determining the pressure applied by the air-jet during the test. Ignoring this two elements in the modeling lead to an overestimation of corneal displacement and therefore an overestimation of corneal stiffness when using the inverse finite element method.

Fluid–structure simulation of a general non-contact tonometry. A required complexity?

Wu, Wei;MALVE', MAURO;Rodriguez Matas, José F.
2018-01-01

Abstract

Understanding corneal biomechanics is important for applications regarding refractive surgery prediction outcomes and the study of pathologies affecting the cornea itself. In this regard, non-contact tonometry (NCT) is gaining interest as a non-invasive diagnostic tool in ophthalmology, and is becoming an alternative method to characterize corneal biomechanics in vivo. In general, identification of material parameters of the cornea from a NCT test relies on the inverse finite element method, for which an accurate and reliable modelization of the test is required. This study explores four different modeling strategies ranging from pure structural analysis up to a fluid–structure interaction model considering the air–cornea and humor–cornea interactions. The four approaches have been compared using clinical biomarkers commonly used in ophthalmology. Results from the simulations indicate the importance of considering the humors as fluids and the deformation of the cornea when determining the pressure applied by the air-jet during the test. Ignoring this two elements in the modeling lead to an overestimation of corneal displacement and therefore an overestimation of corneal stiffness when using the inverse finite element method.
2018
Corneal biomechanics; Dynamic simulations; Fluid–structure interaction simulations; Non-contact tonometry; Computational Mechanics; Mechanics of Materials; Mechanical Engineering; Physics and Astronomy (all); Computer Science Applications1707 Computer Vision and Pattern Recognition
File in questo prodotto:
File Dimensione Formato  
2018-CMAME_Ariza.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1063066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact