We propose a methodology to optimize the decisions of mobile metro-core network orchestration systems. We use machine-learning-based traffic prediction to dynamically provision resources in advance. Resource allocation and reconfigurations are calculated through a heuristic that combines reinforcement learning and mixed integer linear programming.

Machine-Learning-Based Prediction and Optimization of Mobile Metro-Core Networks

Alvizu, Rodolfo;Troia, Sebastian;Maier, Guido;Pattavina, Achille
2018-01-01

Abstract

We propose a methodology to optimize the decisions of mobile metro-core network orchestration systems. We use machine-learning-based traffic prediction to dynamically provision resources in advance. Resource allocation and reconfigurations are calculated through a heuristic that combines reinforcement learning and mixed integer linear programming.
2018
2018 IEEE Photonics Society Summer Topical Meeting Series (SUM)
978-1-5386-5343-2
File in questo prodotto:
File Dimensione Formato  
08456750.pdf

Accesso riservato

: Publisher’s version
Dimensione 242.57 kB
Formato Adobe PDF
242.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1063059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact