Numerical simulations were performed to investigate how the design and the operation conditions of a Pelton turbine injector affect its vulnerability to hydro-abrasive erosion, alongside with its flow control capacity. Use was made of a Volume Of Fluid (VOF) model for simulating the free nozzle jet, a Lagrangian particle tracking model for reproducing the trajectories of the solid particles, and two erosion models for estimating the mass removal. The comparison against earlier studies and the experimental evidence, integrated with a careful sensitivity analysis, gave strength to the reliability of the numerical model. Nozzle seat and needle were the injector components most vulnerable to erosion. As the valve was closing, the erosion of the needle strongly increased, whilst that of the nozzle seat remained broadly constant. The influence of the injector design was also explored, suggesting that a reduction of the needle vertex angle is likely to enhance the risk of erosive wear. Finally, it was found that the possibility to condense the effects of the needle stroke and the needle vertex angle in a single parameter (i.e. the effective opening area) is no more allowed when hydro-abrasive erosion is considered, thereby assessing the need for case-specific wear prediction analyses.

Hydro-abrasive erosion in Pelton turbine injectors: A numerical study

Messa, Gianandrea Vittorio;Mandelli, Simone;Malavasi, Stefano
2019

Abstract

Numerical simulations were performed to investigate how the design and the operation conditions of a Pelton turbine injector affect its vulnerability to hydro-abrasive erosion, alongside with its flow control capacity. Use was made of a Volume Of Fluid (VOF) model for simulating the free nozzle jet, a Lagrangian particle tracking model for reproducing the trajectories of the solid particles, and two erosion models for estimating the mass removal. The comparison against earlier studies and the experimental evidence, integrated with a careful sensitivity analysis, gave strength to the reliability of the numerical model. Nozzle seat and needle were the injector components most vulnerable to erosion. As the valve was closing, the erosion of the needle strongly increased, whilst that of the nozzle seat remained broadly constant. The influence of the injector design was also explored, suggesting that a reduction of the needle vertex angle is likely to enhance the risk of erosive wear. Finally, it was found that the possibility to condense the effects of the needle stroke and the needle vertex angle in a single parameter (i.e. the effective opening area) is no more allowed when hydro-abrasive erosion is considered, thereby assessing the need for case-specific wear prediction analyses.
Discharge coefficient
Hydro-abrasive erosion
Computational fluid dynamics
Pelton turbine injector
File in questo prodotto:
File Dimensione Formato  
messaEtAl_RENE18_AAM.pdf

embargo fino al 31/01/2021

Descrizione: author's accepted manuscript
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1063058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact