Pay-per-click advertising includes various formats (e.g., search, contextual, and social) with a total investment of more than 140 billion USD per year. An advertising campaign is composed of some subcampaigns-each with a different ad-and a cumulative daily budget. The allocation of the ads is ruled exploiting auction mechanisms. In this paper, we propose, for the first time to the best of our knowledge, an algorithm for the online joint bid/budget optimization of pay-per-click multi-channel advertising campaigns. We formulate the optimization problem as a combinatorial bandit problem, in which we use Gaussian Processes to estimate stochastic functions, Bayesian bandit techniques to address the exploration/exploitation problem, and a dynamic programming technique to solve a variation of the Multiple-Choice Knapsack problem. We experimentally evaluate our algorithm both in simulation-using a synthetic setting generated from real data from Yahoo!-and in a real-world application over an advertising period of two months.

A Combinatorial-Bandit Algorithm for the Online Joint Bid/Budget Optimization of Pay-per-Click Advertising Campaigns

NUARA, ALESSANDRO;Francesco Trovò;Nicola Gatti;Marcello Restelli
2018-01-01

Abstract

Pay-per-click advertising includes various formats (e.g., search, contextual, and social) with a total investment of more than 140 billion USD per year. An advertising campaign is composed of some subcampaigns-each with a different ad-and a cumulative daily budget. The allocation of the ads is ruled exploiting auction mechanisms. In this paper, we propose, for the first time to the best of our knowledge, an algorithm for the online joint bid/budget optimization of pay-per-click multi-channel advertising campaigns. We formulate the optimization problem as a combinatorial bandit problem, in which we use Gaussian Processes to estimate stochastic functions, Bayesian bandit techniques to address the exploration/exploitation problem, and a dynamic programming technique to solve a variation of the Multiple-Choice Knapsack problem. We experimentally evaluate our algorithm both in simulation-using a synthetic setting generated from real data from Yahoo!-and in a real-world application over an advertising period of two months.
2018
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
Internet Advertising; Combinatorial MAB; Gaussian Process
File in questo prodotto:
File Dimensione Formato  
nuara_combinatorial.pdf

accesso aperto

Dimensione 566.47 kB
Formato Adobe PDF
566.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1062464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 18
social impact