A power efficient, battery powered optogenetic headstage for doing in-vivo experiments with freely moving genetically modified animals is presented. The proposed system is designed with commercial off-the-shelf components, and is based on a Bluetooth Low Energy (BLE) System-on-Chip (SoC) with an integrated antenna and a programmable ARM Cortex-M3 microprocessor core able to control the circuit. The optical signal is generated using a compact laser diode (LD) suitable for a wearable headstage. LD produces light in a highly concentrated way considerably improving the LD-optical fiber coupling efficiency. The proposed optogenetic system is shown to provide 120 mW/mm2at the fiber tip with a current consumption of 60mA, considerably lower than LED-based systems. The system is remotely controlled by a smartphone app where the user can define optical stimulations patterns settings (optical power, frequency, duty cycle, etc.). It is also powerful enough to be ready to house additional optogenetics functionalities, like electrochemical sensing of the cell response, without significant modifications, thus being the basis of an integrated optogenetic platform.

A laser diode-based wireless optogenetic headstage

MESRI GENDESHMIN, ALIREZA;Sampietro, Marco;Ferrari, Giorgio;
2018-01-01

Abstract

A power efficient, battery powered optogenetic headstage for doing in-vivo experiments with freely moving genetically modified animals is presented. The proposed system is designed with commercial off-the-shelf components, and is based on a Bluetooth Low Energy (BLE) System-on-Chip (SoC) with an integrated antenna and a programmable ARM Cortex-M3 microprocessor core able to control the circuit. The optical signal is generated using a compact laser diode (LD) suitable for a wearable headstage. LD produces light in a highly concentrated way considerably improving the LD-optical fiber coupling efficiency. The proposed optogenetic system is shown to provide 120 mW/mm2at the fiber tip with a current consumption of 60mA, considerably lower than LED-based systems. The system is remotely controlled by a smartphone app where the user can define optical stimulations patterns settings (optical power, frequency, duty cycle, etc.). It is also powerful enough to be ready to house additional optogenetics functionalities, like electrochemical sensing of the cell response, without significant modifications, thus being the basis of an integrated optogenetic platform.
2018
PRIME 2018 - 14th Conference on Ph.D. Research in Microelectronics and Electronics
9781538653869
channelrhodopsin; headstage; laser diode; optical stimulation; optogenetics; Electrical and Electronic Engineering; Electronic, Optical and Magnetic Materials; Instrumentation
File in questo prodotto:
File Dimensione Formato  
PID5386291.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 447.56 kB
Formato Adobe PDF
447.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1062236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact