In this paper, a novel analysis method based on wave digital (WD) principles is presented. The method is employed for modeling and efficiently simulating large photovoltaic (PV) arrays under partial shading conditions. The WD method allows rapid exploration of the current-voltage curve at the load of the PV array, given: the irradiation pattern, the nonlinear PV unit model (e.g., exponential junction model with bypass diode) and the corresponding parameters. The maximum power point can therefore easily be deduced. The main features of the proposed method are the use of a scattering matrix that is able to incorporate any PV array topology and the adoption of independent 1-D nonlinear solvers to handle the constitutive equations of PV units. It is shown that the WD method can be considered as an iterative relaxation method that always converges to the PV array solution. Rigorous proof of convergence and results about the speed of convergence are provided. Compared with standard spice-like simulators, the WD method results to be 35 times faster for PV arrays made of some thousands elements. This paves the way to possible implementations of the method in specialized hardware/software for the real time control and optimization of complex PV plants.

Wave-Based Analysis of Large Nonlinear Photovoltaic Arrays

Bernardini, Alberto;Maffezzoni, Paolo;DANIEL, LUCA;Sarti, Augusto
2018-01-01

Abstract

In this paper, a novel analysis method based on wave digital (WD) principles is presented. The method is employed for modeling and efficiently simulating large photovoltaic (PV) arrays under partial shading conditions. The WD method allows rapid exploration of the current-voltage curve at the load of the PV array, given: the irradiation pattern, the nonlinear PV unit model (e.g., exponential junction model with bypass diode) and the corresponding parameters. The maximum power point can therefore easily be deduced. The main features of the proposed method are the use of a scattering matrix that is able to incorporate any PV array topology and the adoption of independent 1-D nonlinear solvers to handle the constitutive equations of PV units. It is shown that the WD method can be considered as an iterative relaxation method that always converges to the PV array solution. Rigorous proof of convergence and results about the speed of convergence are provided. Compared with standard spice-like simulators, the WD method results to be 35 times faster for PV arrays made of some thousands elements. This paves the way to possible implementations of the method in specialized hardware/software for the real time control and optimization of complex PV plants.
2018
Nonlinear circuits; wave digital filters; PV modeling; scattering; network topology
File in questo prodotto:
File Dimensione Formato  
BernardiniTCASphotovWDF.pdf

accesso aperto

Descrizione: articolo principale
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 7.88 MB
Formato Adobe PDF
7.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1061617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 27
social impact