Torque security is an important element for future automobile development such as for electric and and hybrid electric vehicles (EV/HEVs). For Drive-by-Wire systems that are commonly used in modern vehicles, pedal position signals are critical for ensuring correct calculation of torque request to the rest of the powertrain. This paper develops a model based fault diagnostic scheme for electrified vehicle powertrain torque security problems, with special focus on pedal position sensor faults. After the design of the diagnostic strategy, a fault tolerant control strategy is proposed to mitigate the effect of the faults. The torque security study is applied to a case study of a prototype vehicle developed by the OSU EcoCAR2 team. The diagnostic and fault tolerant control scheme are tested and validated through Model-in-the-Loop (MIL) and Hardware-in-the-Loop (HIL) simulations.
Fault diagnosis and fault tolerant control for electrified vehicle torque security
Amodio, Alessandro;Rizzoni, Giorgio
2016-01-01
Abstract
Torque security is an important element for future automobile development such as for electric and and hybrid electric vehicles (EV/HEVs). For Drive-by-Wire systems that are commonly used in modern vehicles, pedal position signals are critical for ensuring correct calculation of torque request to the rest of the powertrain. This paper develops a model based fault diagnostic scheme for electrified vehicle powertrain torque security problems, with special focus on pedal position sensor faults. After the design of the diagnostic strategy, a fault tolerant control strategy is proposed to mitigate the effect of the faults. The torque security study is applied to a case study of a prototype vehicle developed by the OSU EcoCAR2 team. The diagnostic and fault tolerant control scheme are tested and validated through Model-in-the-Loop (MIL) and Hardware-in-the-Loop (HIL) simulations.File | Dimensione | Formato | |
---|---|---|---|
ITEC2016_Fault.pdf
Accesso riservato
Descrizione: Articolo principale
Dimensione
993.34 kB
Formato
Adobe PDF
|
993.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.